Gaussian Thermostats as Geodesic Flows of Nonsymmetric Linear Connections

نویسندگان

  • Piotr Przytycki
  • Maciej P. Wojtkowski
  • P. Przytycki
  • M. P. Wojtkowski
چکیده

We establish that Gaussian thermostats are geodesic flows of special metric connections. We give sufficient conditions for hyperbolicity of geodesic flows of metric connections in terms of their curvature and torsion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic flows and Gaussian thermostats on manifolds of negative curvature

We consider a class of flows which includes both magnetic flows and Gaussian thermostats of external fields. We give sufficient conditions for such flows on manifolds of negative sectional curvature to be Anosov. 0. Introduction. The geodesic flow on a Riemannian manifold describes inertial motion of a point particle confined to the manifold. If the manifold has negative sectional curvature we ...

متن کامل

WeylManifolds and Gaussian Thermostats

A relation between Weyl connections and Gaussian thermostats is exposed and exploited. 2000 Mathematics Subject Classification: 37D, 53C, 70K, 82C05.

متن کامل

ENTROPY OF GEODESIC FLOWS ON SUBSPACES OF HECKE SURFACE WITH ARITHMETIC CODE

There are dierent ways to code the geodesic flows on surfaces with negative curvature. Such code spaces give a useful tool to verify the dynamical properties of geodesic flows. Here we consider special subspaces of geodesic flows on Hecke surface whose arithmetic codings varies on a set with innite alphabet. Then we will compare the topological complexity of them by computing their topological ...

متن کامل

Einstein Gravity , Lagrange – Finsler Geometry , and Nonsymmetric Metrics

We formulate an approach to the geometry of Riemann–Cartan spaces provided with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart–Moffat and Finsler–Lag...

متن کامل

Geometry, and Nonsymmetric Metrics on Nonholonomic Manifolds

We formulate an approach to the geometry of Riemann–Cartan spaces provided with nonholonomic distributions defined by generic off–diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart–Moffat and Finsler–Lag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007